Patterns in Chaos

How Data Visualisation Helps To See the Invisible

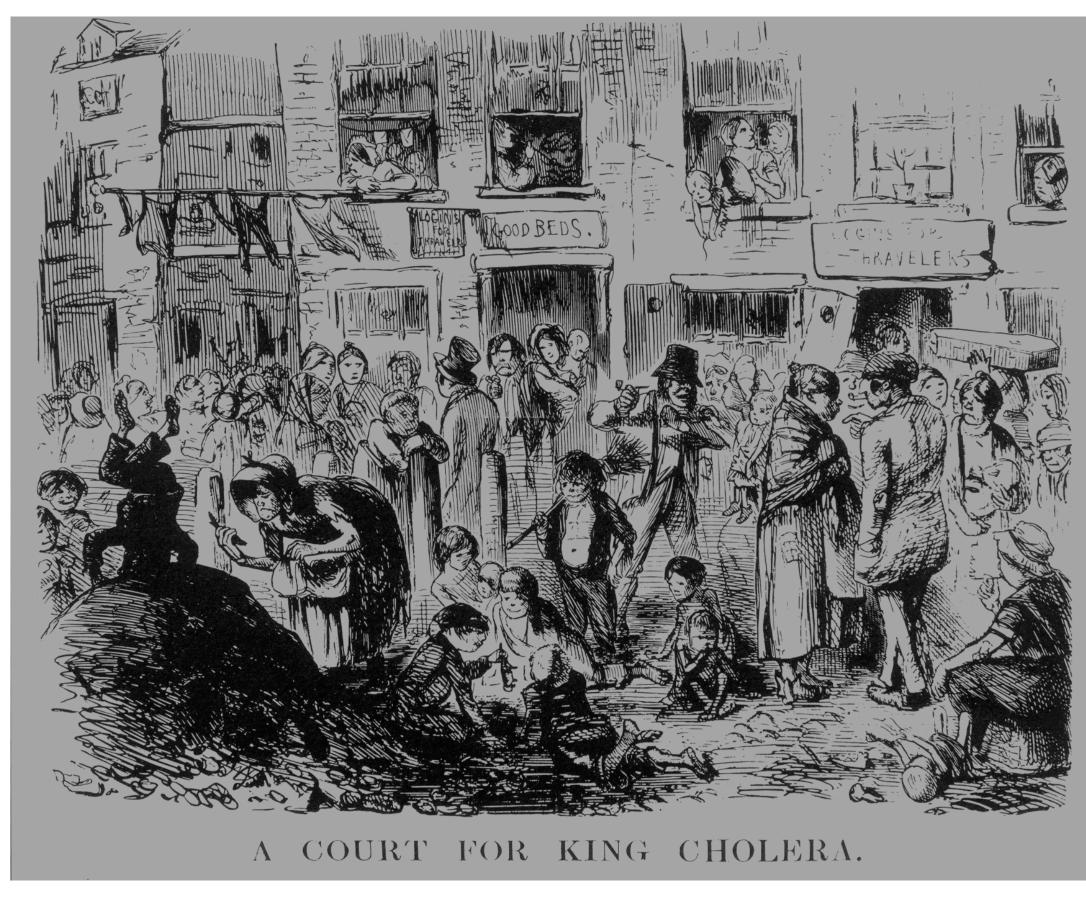
whoami: yote

- Biologist turned biomathematician:
 - PhD in mathematical biology (cancer research)
 - Mostly pencil-and-paper work, but also analysis of larger datasets.
 - Now in industrial research, de-facto doing data science.
 - Effective communication of results to colleagues and nontechnical folks.

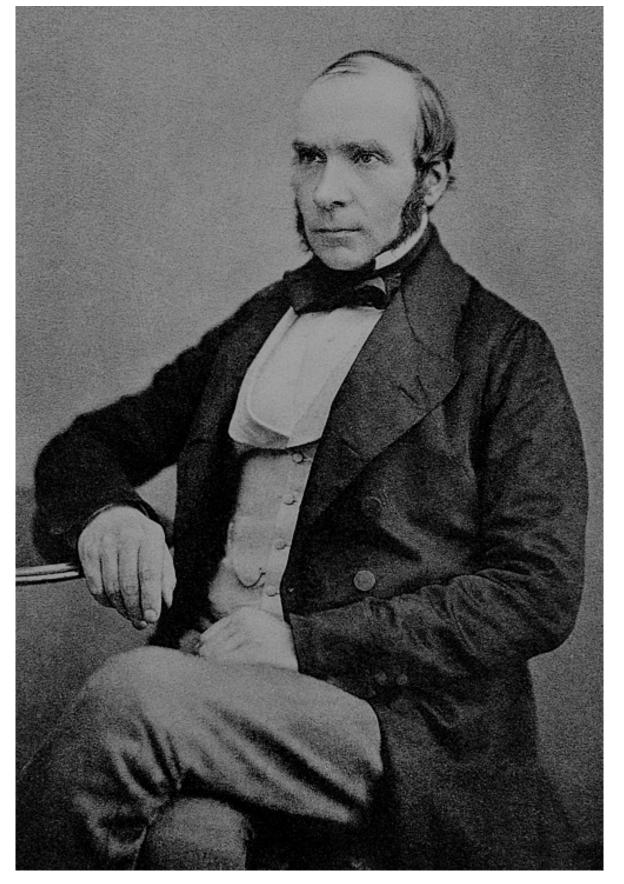
1. Motivating Examples

The 1854 cholera outbreak in Soho, London.

616 people died, but what was to blame?



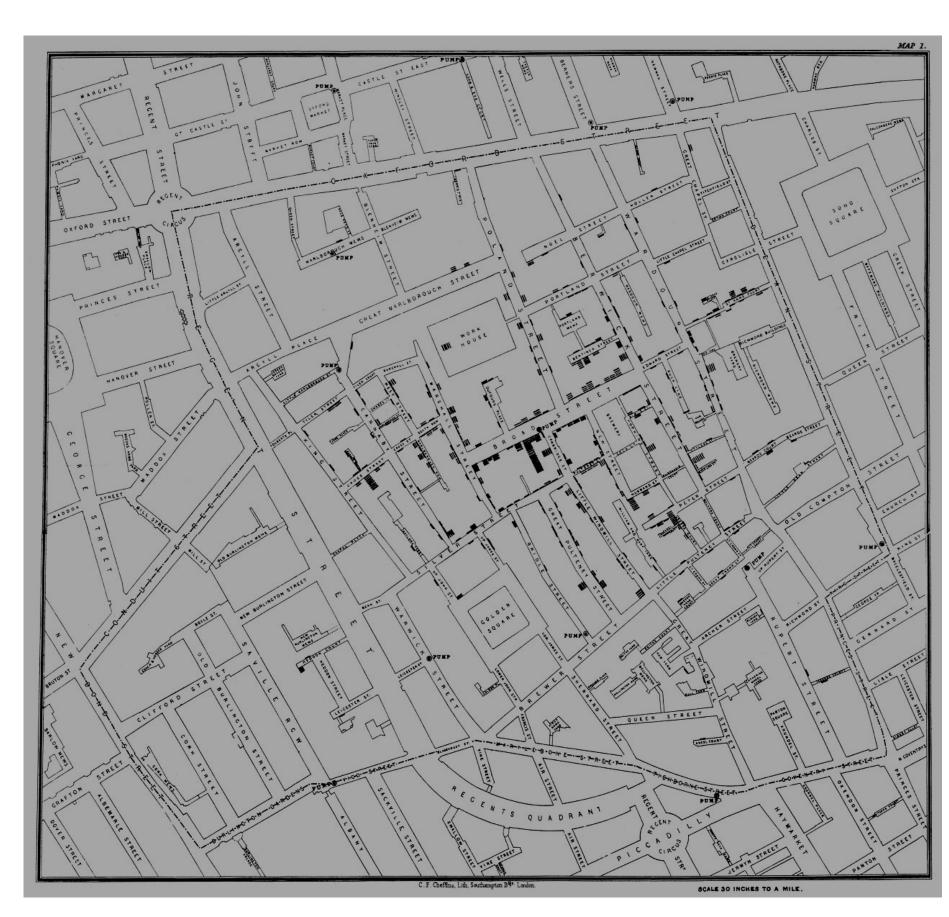
(https://en.wikipedia.org/wiki/1854 Broad Street cholera outbreak#/media/File:Punch-A Court for King Cholera.png)



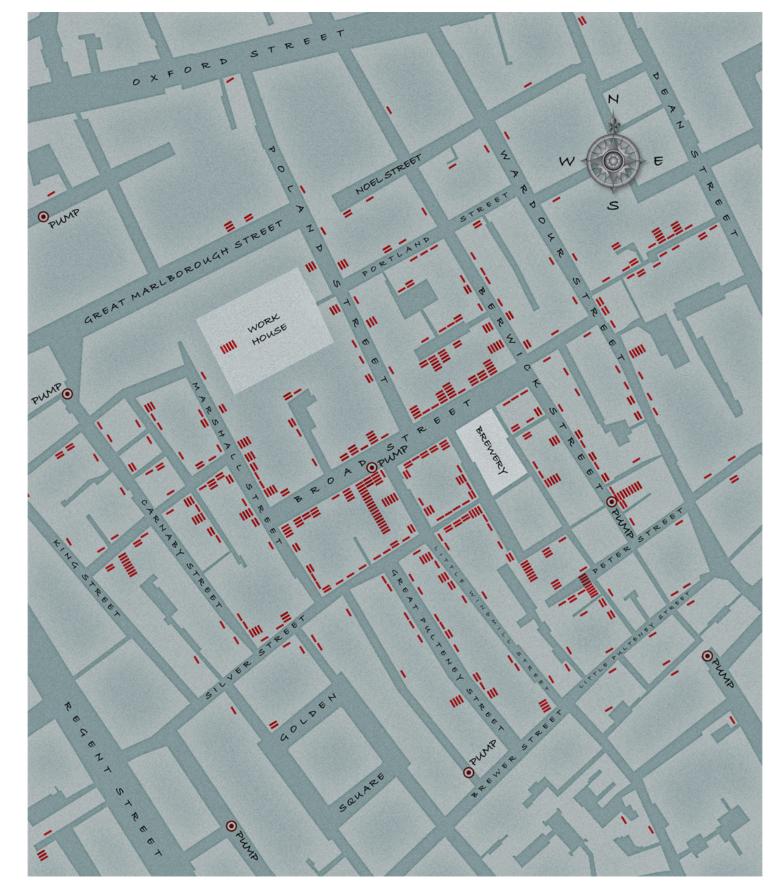
(https://en.wikipedia.org/wiki/John Snow#/media/File:John Snow.jpg)

The 1854 cholera outbreak in Soho, London.

616 people died, but what was to blame?



(https://en.wikipedia.org/wiki/File:Snow-cholera-map-1.jpg)



(https://www.merrittcartographic.co.uk/cholera.html)

The 1854 cholera outbreak in Soho, London.

616 people died, but what was to blame?

(https://learn.arcgis.com/de/projects/map-a-historic-cholera-outbreak/GUID-3CA27B42-F093-4FE5-B4DA-72D15877BE8A-web.png)

(https://upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Pump_Handle_-_John_Snow_.jpg/1920px-Pump_Handle_-_John_Snow_.jpg)

Anscombe's Quartet teaches us to look.

(Francis Anscombe, 1973)

Property	Value	Accuracy
Mean of x	9	exact
Sample variance of x : s_x^2	11	exact
Mean of y	7.50	to 2 decimal places
Sample variance of y : s_y^2	4.125	±0.003
Correlation between x and y	0.816	to 3 decimal places
Linear regression line	y = 3.00 + 0.500x	to 2 and 3 decimal places, respectively
Coefficient of determination of the linear regression: ${\cal R}^2$	0.67	to 2 decimal places

What did we just observe?

"Der Mensch ist ein Augentier."

- 90% of all information transmitted to the human brain are visual. (Potter et al., 2014, Atten Percept Psychophys.)
- 50% of our brain is related to vision, and visual information accounts for 66% of its electrical activity at 2-3 billion firings per seconds. (Fixot et al., 1957, Am J Ophthalmol.)
- The human brain processes images 60'000 times faster than text (Vogel et al., 1986).
- But some forms of visualisations seem to be more effective than others...
- ... so how can we do a good job at data visualisation?

2. Two Simple Rules of Thumb

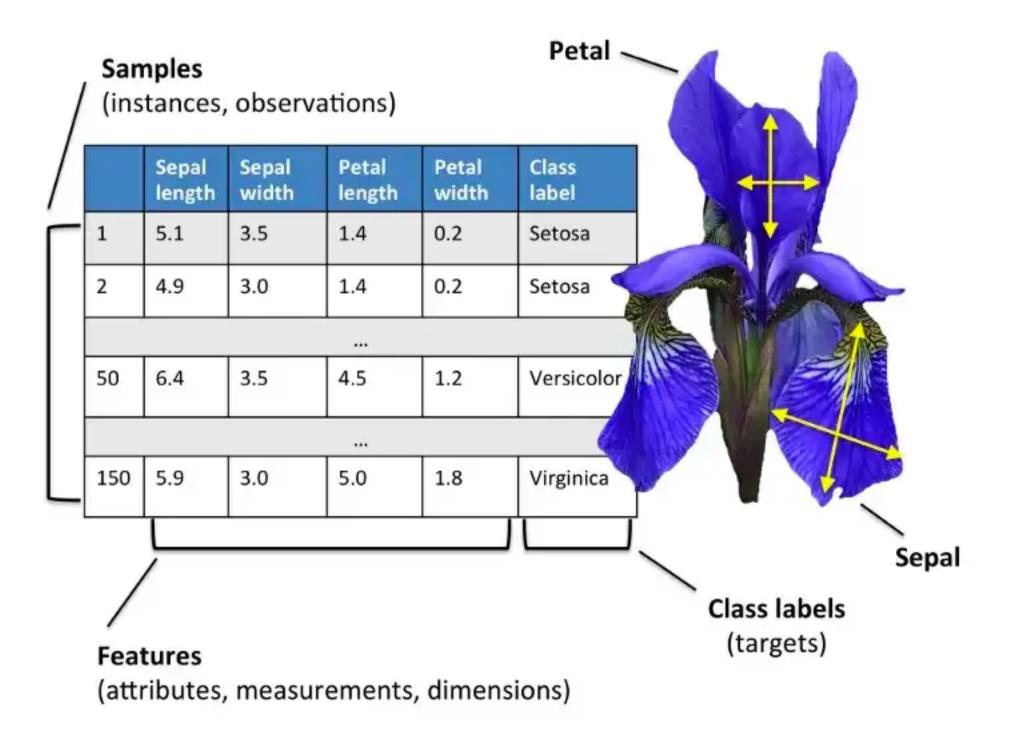
Two simple rules already go a long way.

(Disclaimer: Personal opinion.)

- Simplicity
 - Start with the simplest analyses possible (single variables, subsets, ...).
 - Gradually build up complexity of the analysis (and your understanding).
 - Simple kinds of plots first: Always try to plot the raw data (or parts of it) first.
- Mindfulness
 - Every plot is supposed to test / make one point, which you should be keenly aware of before.
 - Every choice you make for this plot follows from this goal.
 - Eliminate everything not required for this ("Chart Junk").
 - Be aware of what a specific kind of plot can tell you...
 - ... and what not! (Possibilities for follow-up analyses!)

Let's apply these rules to the Iris dataset.

(Ronald Fisher, 1936)



(https://raw.githubusercontent.com/RubixML/Iris/master/docs/images/iris-species.png)

(https://eminebozkus.medium.com/exploring-the-iris-flower-dataset-4e000bcc266c)

One of many possible objectives: Telling apart species using measurements.

We start simple.

We begin with only one variable and directly show the raw data.

- Some variables seem to differ more strongly between species.
- But there's no way to always tell all three species apart.
- What can these plots not tell us?

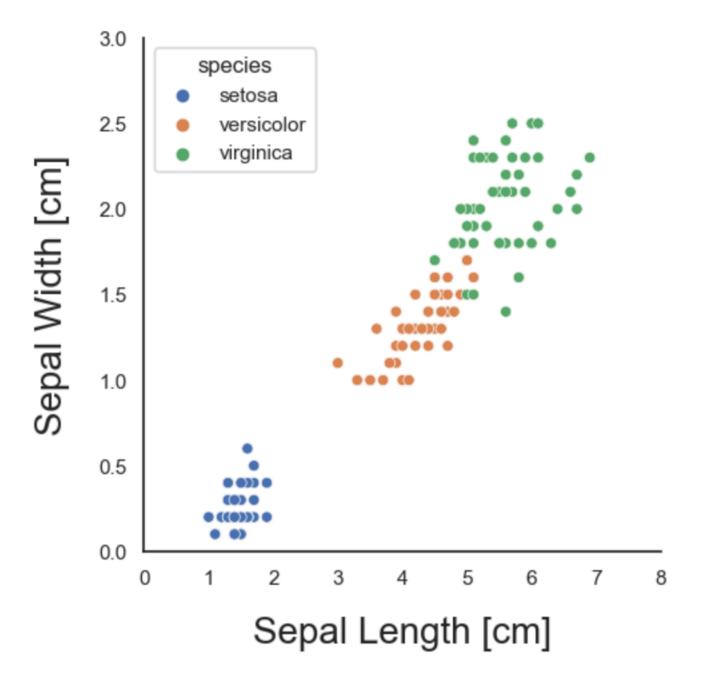
In 2-d, some more patterns emerge.

Let's focus on the sepals first.

- Sepals don't seem to carry all too much information.
- Some ways of encoding categorical data are easier to visually grasp.
- Some ways (like size) bias attention towards certain categories.
- Size seems to suggests a continuous rather than a categorical trait...

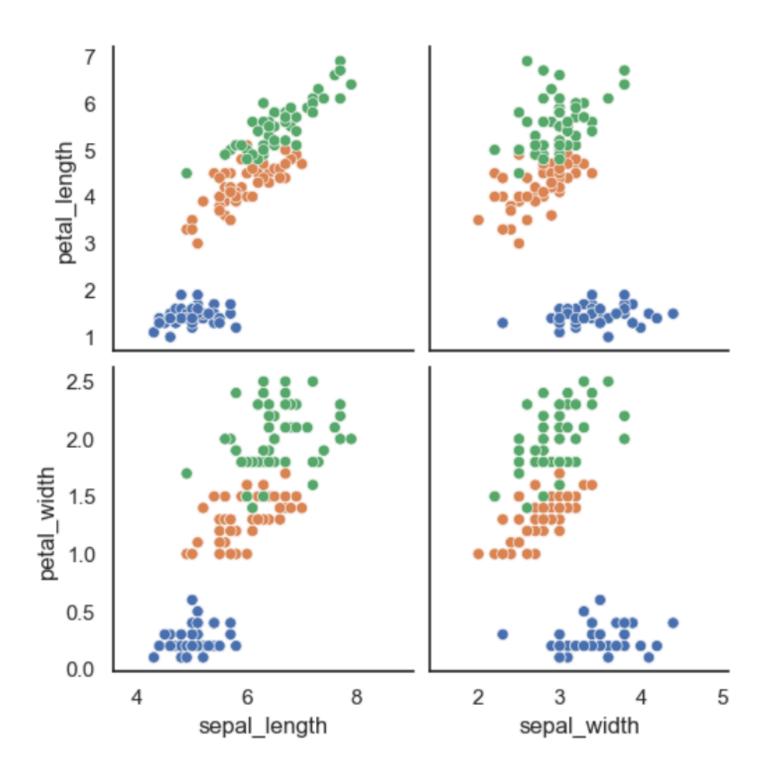
In 2-d, some more patterns emerge.

Now let's examine the petals.



- Petals make all three species (nearly perfectly) distinguishable.
- Interestingly, there's a clean correlation, consistent across species why?
- What do we still need to look at?

In 2-d, some more patterns emerge. Four plots remain.



- Petal and sepal traits seems to be rather independent why?
- Four variables required us to look at six plots already...

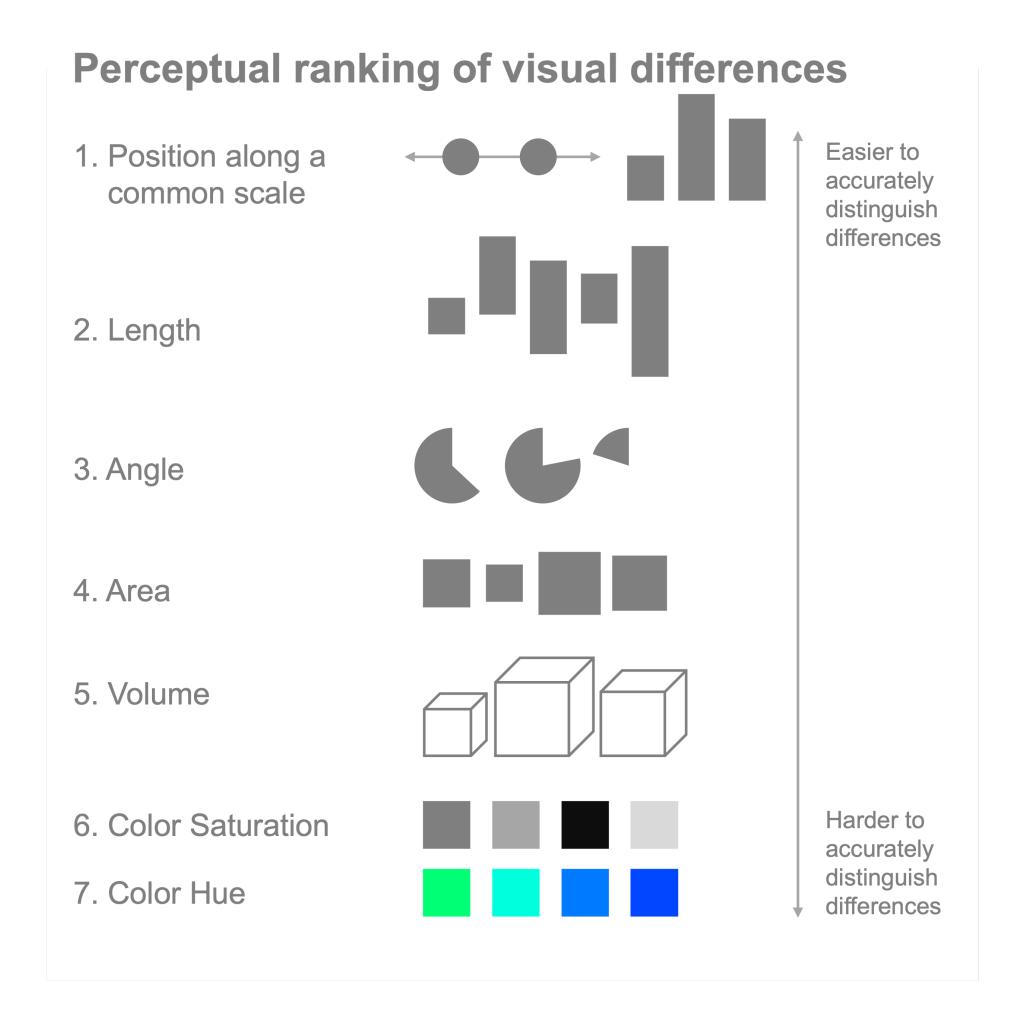
What did we just observe?

- We have distinguished categorical vs continuous variables.
 - They seem to work best with different kinds of visual cues.
 - There is psychological research on what works best!
- More variables means more plots to inspect.
 - There are ways around that.

3. Results From Psychology

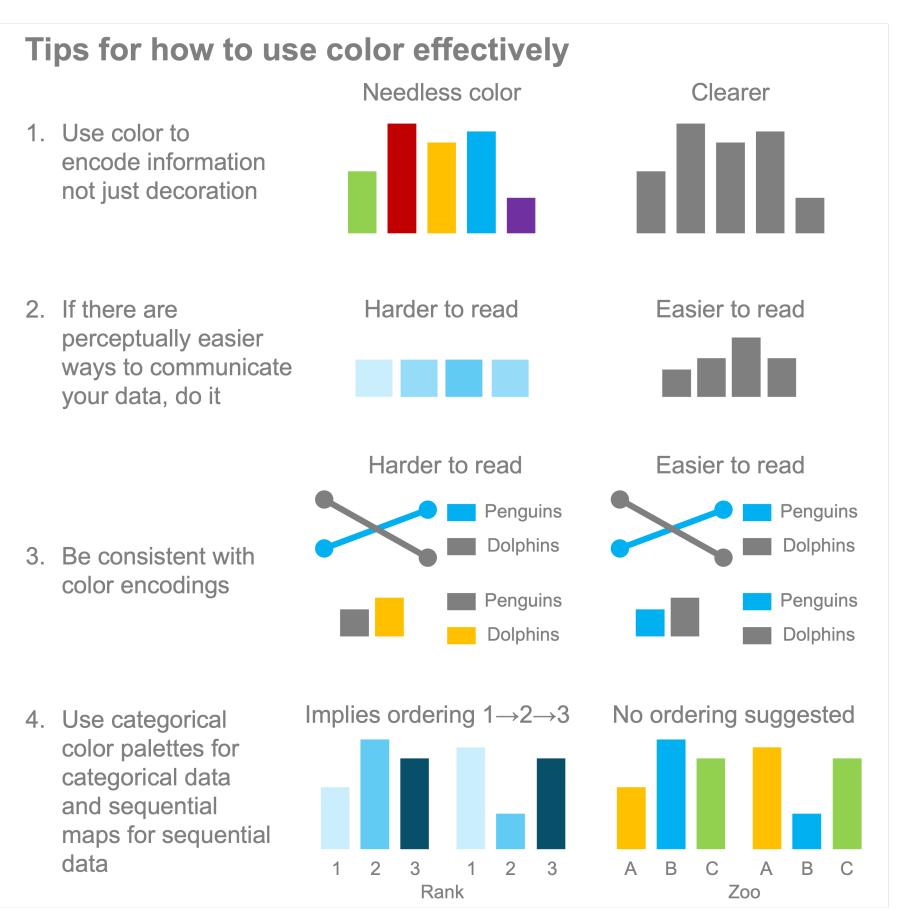
Some visualisations are better than others.

Cleveland & McGill (1985), for the case of continuous variables.



Colour is immensely powerful.

Use it sparingly (for categories) and try to not mislead or confuse.



(https://www.practicaldatascience.org/notebooks/class 5/week 1/1.1.2 effective plotting practices.html)

4. The Curse Of Dimensionality

Some first ideas for dealing with it.

- Preselecting features based on univariate inspection...
 - ...and hoping for the best.
- Dropping very strongly correlated (sets of) predictors, as they only carry identical information.
 - We'll see an example of this soon.
- Trying to let a Machine Learning model figure it out by itself.
- But clever ways of visualisation can also work as well:).

The classic Diamonds Dataset

(modified from https://www.kyle-w-brown.com/diamonds-prediction/diamonds-data.html, originally sourced from the Loose Diamonds Search Engine)

Format

A data frame with 53940 rows and 12 variables:

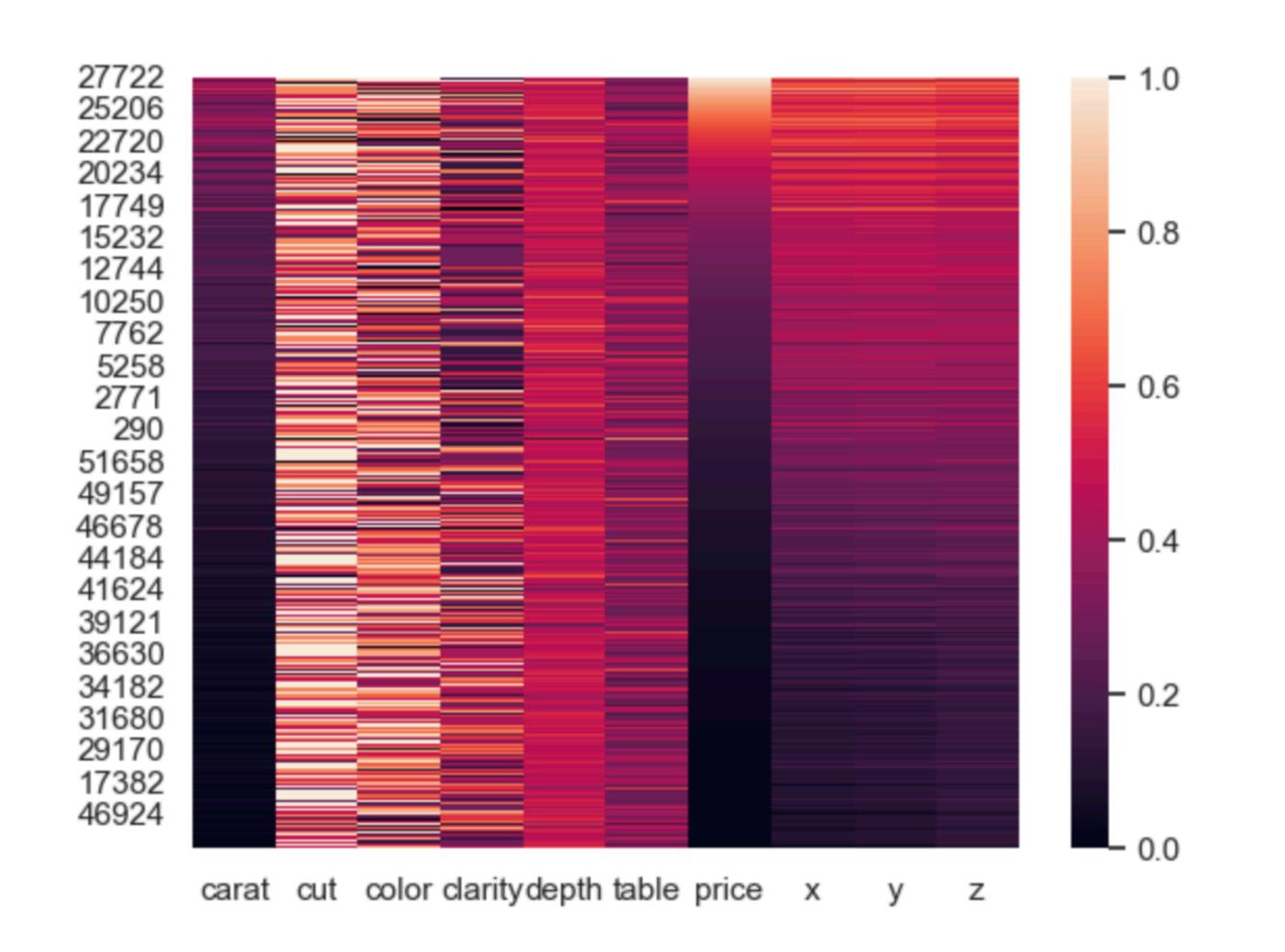
- carat: Weight of the diamond (0.2–5.01).
- cut: Quality of the cut (Fair, Good, Very Good, Premium, Ideal).
- color: Diamond color, from D (best) to J (worst).
- clarity: A measurement of how clear the diamond is (I1 (worst), SI2, SI1, VS2, VS1, VVS2, VVS1, IF (best)).
- depth: Width of top of diamond relative to widest point (43–95).
- table: Total depth percentage = z / mean(x, y) = 2 * z / (x + y) (43–79).
- price: Price in US dollars (\$326-\$18,823).
- x: Length in mm (0–10.74).
- y: Width in mm (0–58.9).
- z: Depth in mm (0-31.8).

diamonds										
	carat	cut	color	clarity	depth	table	price	x	у	z
0	0.23	5	6	2	61.5	55.0	326	3.95	3.98	2.43
1	0.21	4	6	3	59.8	61.0	326	3.89	3.84	2.31
2	0.23	2	6	5	56.9	65.0	327	4.05	4.07	2.31
3	0.29	4	2	4	62.4	58.0	334	4.20	4.23	2.63
4	0.31	2	1	2	63.3	58.0	335	4.34	4.35	2.75
53897	0.72	5	7	3	60.8	57.0	2757	5.75	5.76	3.50
53898	0.72	2	7	3	63.1	55.0	2757	5.69	5.75	3.61
53899	0.70	3	7	3	62.8	60.0	2757	5.66	5.68	3.56
53900	0.86	4	3	2	61.0	58.0	2757	6.15	6.12	3.74
53901	0.75	5	7	2	62.2	55.0	2757	5.83	5.87	3.64

53902 rows × 10 columns

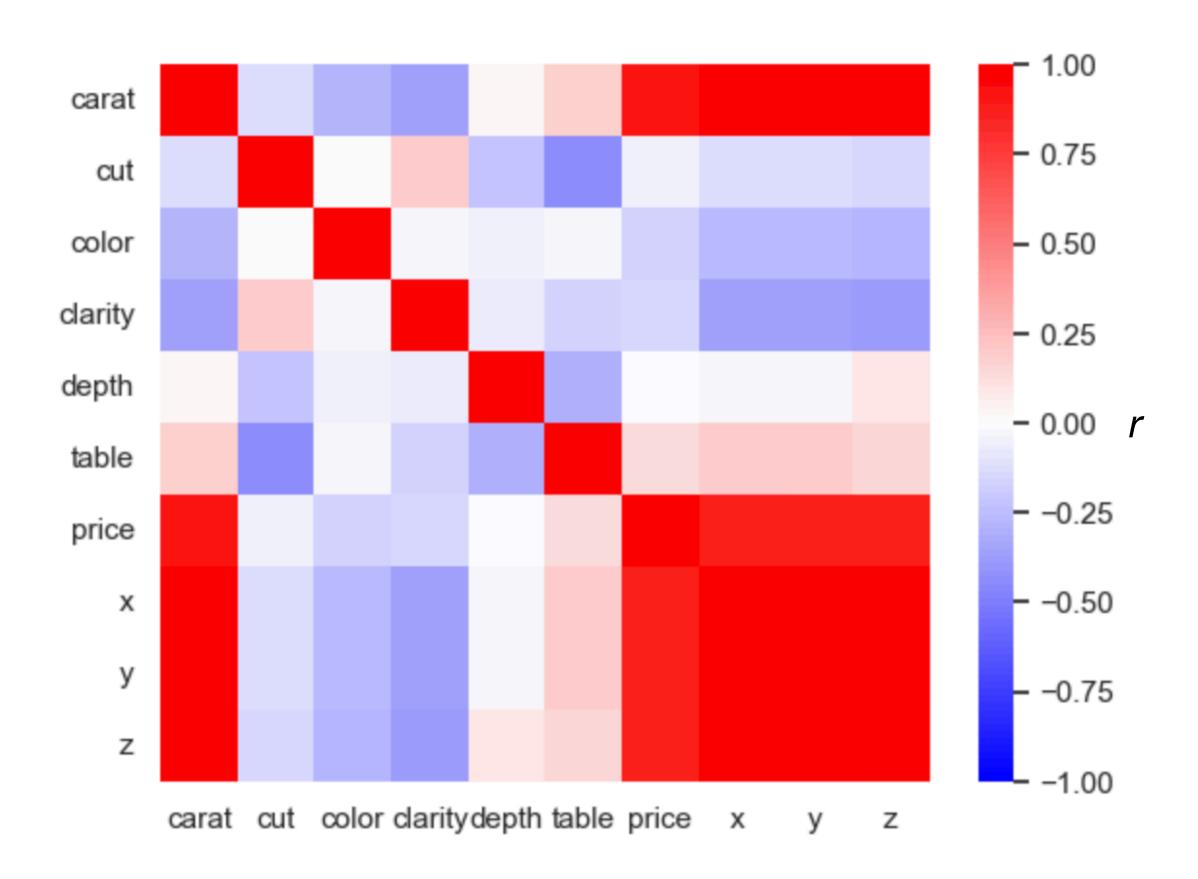
A heatmap is a nice "map" of the dataset.

(We transformed all variables to 0...1 and sorted entries by price.)



- Price, carat, x, y, z seem to be strongly correlated with each other.
- Cut, colour, clarity, depth seem not strongly correlated.
 - But it is well-known that these factors influence pricing.
 - What are we missing?
- Assessing correlation patterns does not scale (30'000 human genes...).

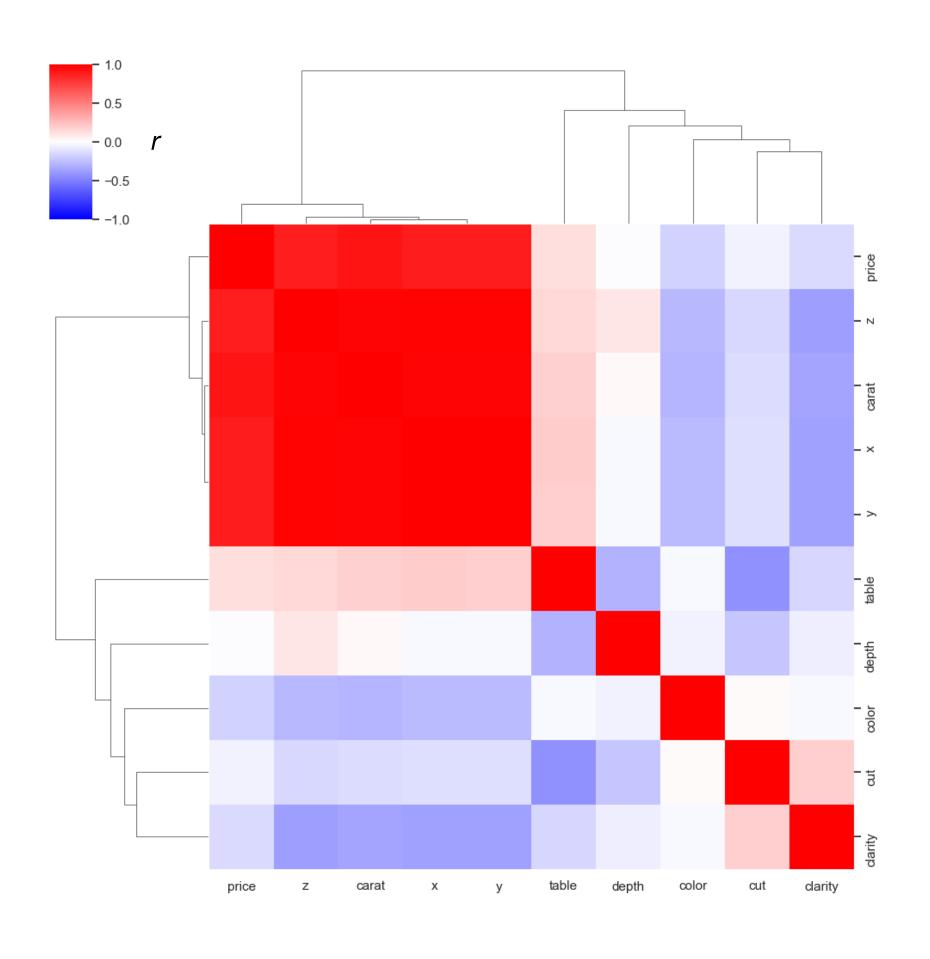
A heatmap of correlation coefficients can help.



- We use a different colormap now why?
- Correlation coefficients confirm the pattern we just observed by inspection.

A clustermap tries to group correlated features.

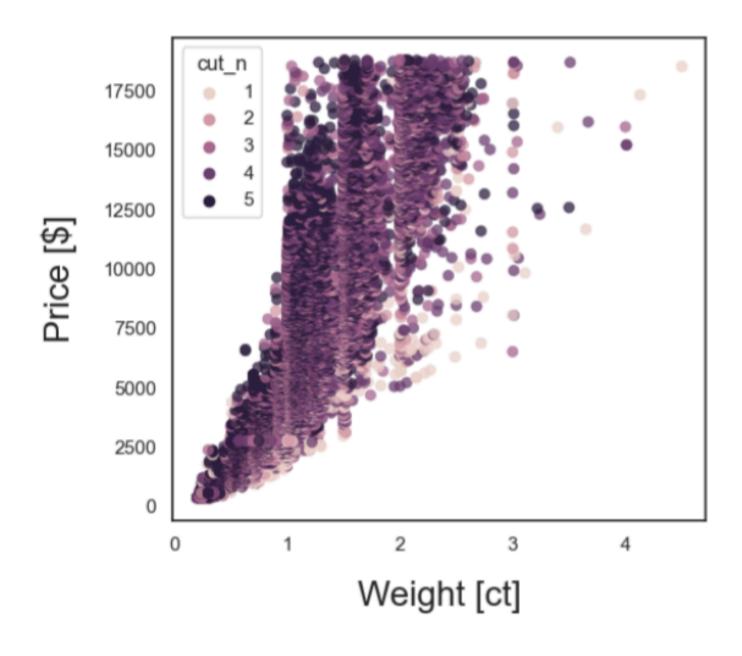
(Cave: There is some mathematical machinery behind this, so know what you are doing.)

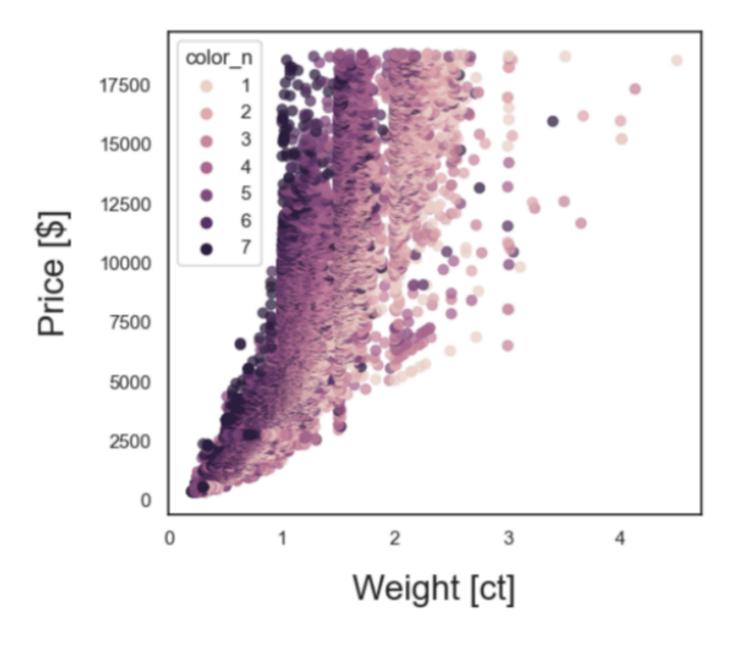


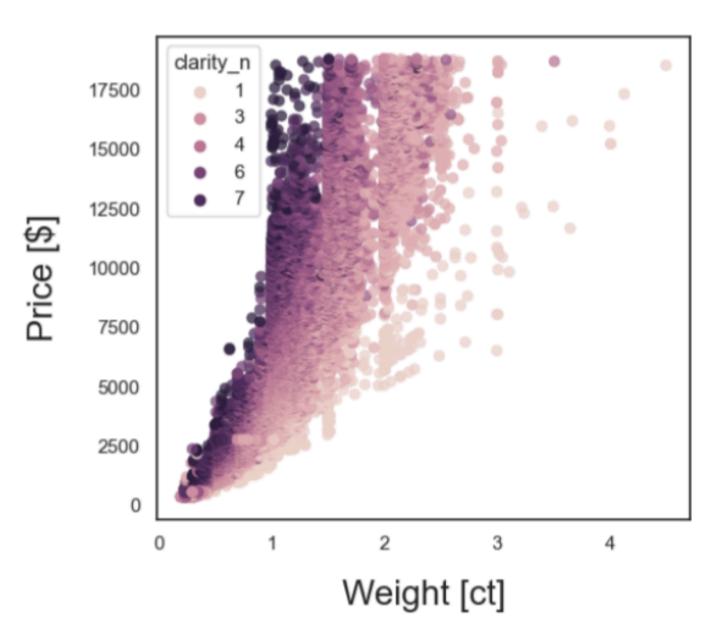
- Clustering of correlation coefficients again confirms the pattern we just observed by inspection.
- However, price still seems uncorrelated with cut, colour, clarity.
 - Why?

Cut, colour and clarity are secondary factors.

Also note the sharp increase in price at exactly 1ct;).



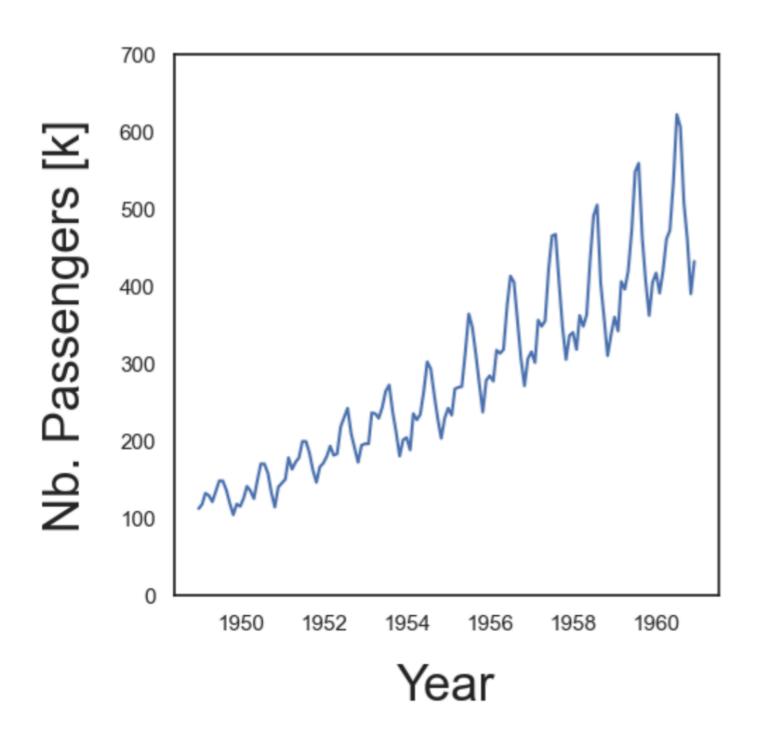


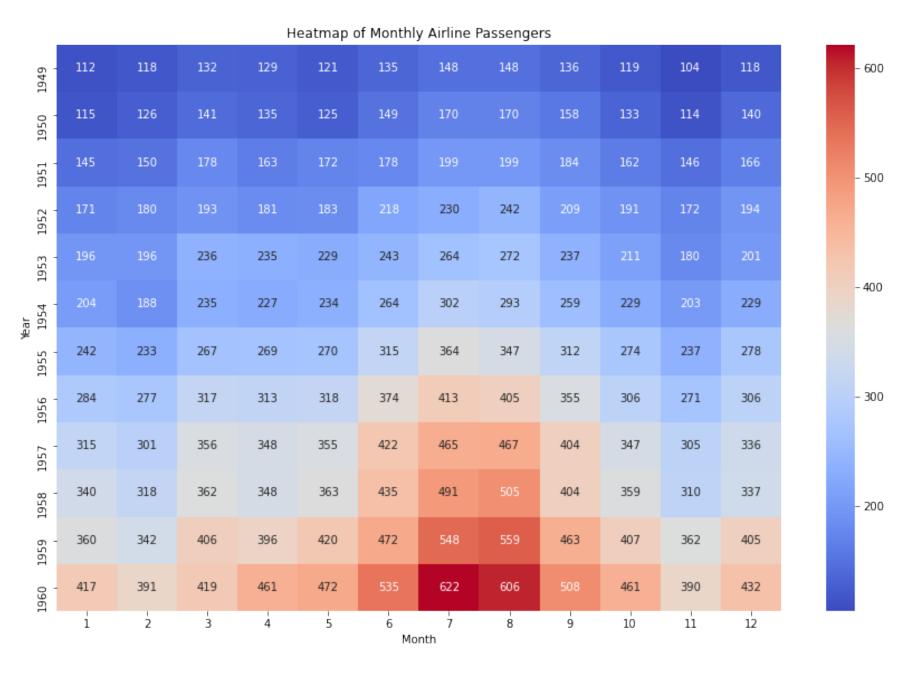


5. Heatmaps for Time Series Data

Airline passenger data shows seasonality.

Box, Jenkins & Reinsel (1976)





(https://medium.com/@kylejones 47003/time-series-visualization-for-business-analysis-with-python-5df695543d4a

- Numbers increase between years.
- July and August seem to dominate within a year.
- Is there any design choice you disagree with?

A continuous scale is more appropriate.

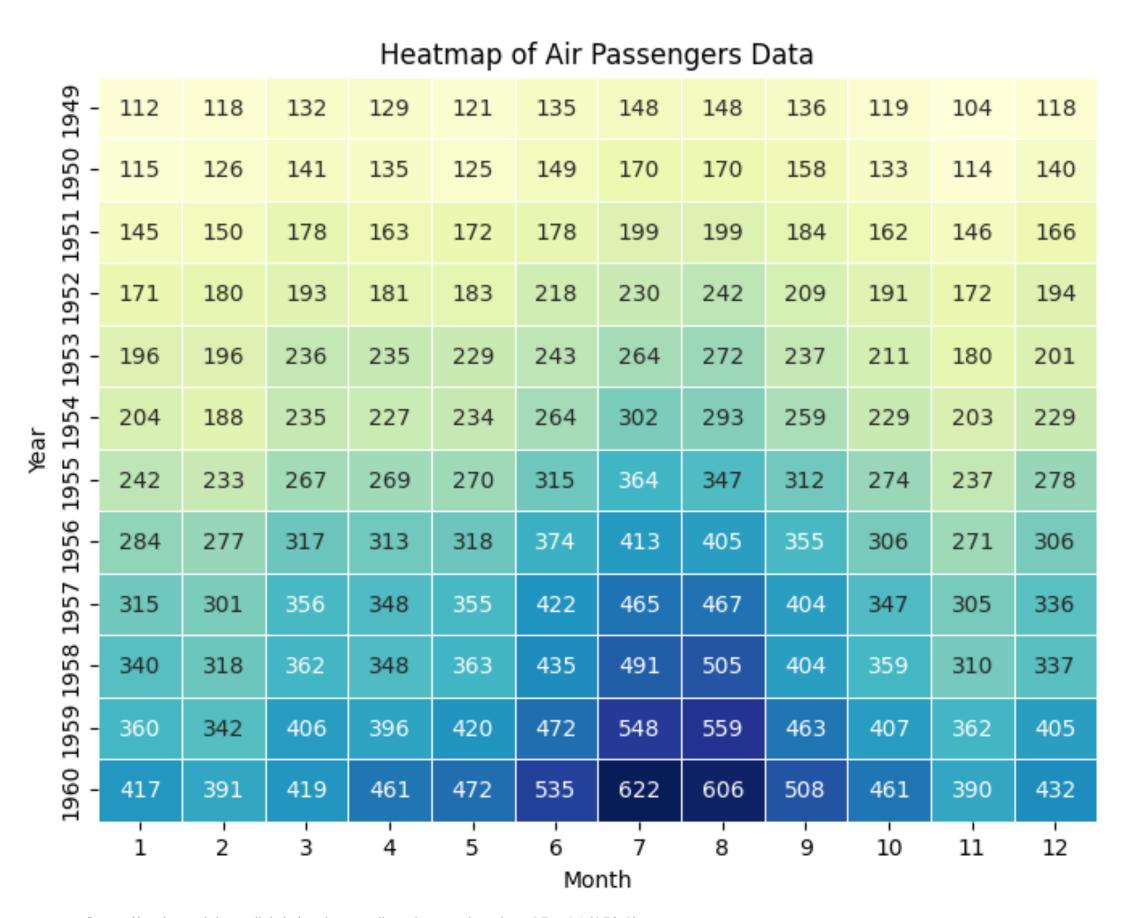
600

- 500

- 400

- 300

- 200



- What can we not see?
 - Trends within weeks, days, ...
 - Does the ratio between months stay consistent over years?

6. Conclusions

Conclusions

- "Der Mensch ist ein Augentier."
- Start with the simplest plots / analyses imaginable, and work as closely to the raw data as possible.
 - Abstractions / more complex plots do have their place, but should only be used when really necessary.
- Data can be continuous or categorical. Choose type of visualisation accordingly.
 - Keep in mind that some types of visualisation can be suggestive...
 - ...and some are just Bad (TM).
- Be mindful of what a particular plot
 - can do (-> eliminate everything unnecessary),
 - and what not (-> follow-up questions).

Thanks for your attention!

- Questions always very welcome!
- Feel free to hit me up:
 - On Telegram: @GermanCoyote
 - On Matrix: @yote:catgirl.cloud
 - And of course in person…

